47 research outputs found

    Interplay between manganese and iron in pneumococcal pathogenesis: role of the orphan response regulator RitR

    Get PDF
    Streptococcus pneumoniae (the pneumococcus) is a major human pathogen that is carried asymptomatically in the nasopharynx by up to 70% of the human population. Translocation of the bacteria into internal sites can cause a range of diseases, such as pneumonia, otitis media, meningitis, and bacteremia. This transition from nasopharynx to growth at systemic sites means that the pneumococcus needs to adjust to a variety of environmental conditions, including transition metal ion availability. Although it is an important nutrient, iron potentiates oxidative stress, and it is established that in S. pneumoniae, expression of iron transport systems and proteins that protect against oxidative stress are regulated by an orphan response regulator, RitR. In this study, we investigated the effect of iron and manganese ion availability on the growth of a ritR mutant. Deletion of ritR led to impaired growth of bacteria in high-iron medium, but this phenotype could be suppressed with the addition of manganese. Measurement of metal ion accumulation indicated that manganese prevents iron accumulation. Furthermore, the addition of manganese also led to a reduction in the amount of hydrogen peroxide produced by bacterial cells. Studies of virulence in a murine model of infection indicated that RitR was not essential for pneumococcal survival and suggested that derepression of iron uptake systems may enhance the survival of pneumococci in some niches

    Metallation and mismetallation of iron and manganese proteins in vitro and in vivo: the class I ribonucleotide reductases as a case study

    Get PDF
    How cells ensure correct metallation of a given protein and whether a degree of promiscuity in metal binding has evolved are largely unanswered questions. In a classic case, iron- and manganese-dependent superoxide dismutases (SODs) catalyze the disproportionation of superoxide using highly similar protein scaffolds and nearly identical active sites. However, most of these enzymes are active with only one metal, although both metals can bind in vitro and in vivo. Iron(II) and manganese(II) bind weakly to most proteins and possess similar coordination preferences. Their distinct redox properties suggest that they are unlikely to be interchangeable in biological systems except when they function in Lewis acid catalytic roles, yet recent work suggests this is not always the case. This review summarizes the diversity of ways in which iron and manganese are substituted in similar or identical protein frameworks. As models, we discuss (1) enzymes, such as epimerases, thought to use Fe[superscript II] as a Lewis acid under normal growth conditions but which switch to Mn[superscript II] under oxidative stress; (2) extradiol dioxygenases, which have been found to use both Fe[superscript II] and Mn[superscript II], the redox role of which in catalysis remains to be elucidated; (3) SODs, which use redox chemistry and are generally metal-specific; and (4) the class I ribonucleotide reductases (RNRs), which have evolved unique biosynthetic pathways to control metallation. The primary focus is the class Ib RNRs, which can catalyze formation of a stable radical on a tyrosine residue in their β2 subunits using either a di-iron or a recently characterized dimanganese cofactor. The physiological roles of enzymes that can switch between iron and manganese cofactors are discussed, as are insights obtained from the studies of many groups regarding iron and manganese homeostasis and the divergent and convergent strategies organisms use for control of protein metallation. We propose that, in many of the systems discussed, “discrimination” between metals is not performed by the protein itself, but it is instead determined by the environment in which the protein is expressed.National Institutes of Health (U.S.) (Grant GM81393

    A Novel Manganese Efflux System, YebN, Is Required for Virulence by Xanthomonas oryzae pv. oryzae

    Get PDF
    Manganese ions (Mn2+) play a crucial role in virulence and protection against oxidative stress in bacterial pathogens. Such pathogens appear to have evolved complex mechanisms for regulating Mn2+ uptake and efflux. Despite numerous studies on Mn2+ uptake, however, only one efflux system has been identified to date. Here, we report on a novel Mn2+ export system, YebN, in Xanthomonas oryzae pv. oryzae (Xoo), the causative agent of bacterial leaf blight. Compared with wild-type PXO99, the yebN mutant was highly sensitive to Mn2+ and accumulated high concentrations of intracellular manganese. In addition, we found that expression of yebN was positively regulated by Mn2+ and the Mn2+-dependent transcription regulator, MntR. Interestingly, the yebN mutant was more tolerant to methyl viologen and H2O2 in low Mn2+ medium than PXO99, but more sensitive in high Mn2+ medium, implying that YebN plays an important role in Mn2+ homoeostasis and detoxification of reactive oxygen species (ROS). Notably, deletion of yebN rendered Xoo sensitive to hypo-osmotic shock, suggesting that YebN may protect against such stress. That mutation of yebN substantially reduced the Xoo growth rate and lesion formation in rice implies that YebN could be involved in Xoo fitness in host. Although YebN has two DUF204 domains, it lacks homology to any known metal transporter. Hence, this is the first report of a novel metal export system that plays essential roles in hypo-osmotic and oxidative stress, and virulence. Our results lay the foundations for elucidating the complex and fascinating relationship between metal homeostasis and host-pathogen interactions

    Protein damage and death by radiation in Escherichia coli and Deinococcus radiodurans

    No full text
    Deinococcus radiodurans is among a small number of bacterial species that are extremely resistant to ionizing radiation, UV light, toxic chemicals, and desiccation. We measured proteome oxidation (i.e., protein carbonylation, PC) in D. radiodurans as well as in standard and evolved resistant strains of Escherichia coli exposed to ionizing radiation or UVC light and found a consistent correlation with cell killing. The unique quantitative relationship between incurred PC and cell death holds over the entire range of killing for all tested bacteria and for both lethal agents, meaning that both bacterial species are equally sensitive to PC. We show that the extraordinary robustness of D. radiodurans depends on efficient proteome protection (but not DNA protection) against constitutive and radiation-induced PC consisting of low molecular weight cytosolic compounds. Remarkably, experimental evolution of resistance to ionizing radiation in E. coli coevolves with protection against PC. The decline in biosynthetic efficacy of the cellular proteome, as measured by the loss of reproduction of undamaged bacteriophage λ in irradiated standard and evolved ionizing radiation-resistant E. coli, correlates with radiation-induced oxidative damage to host cells and their sensitivity to ionizing radiation. This correlation suggests that cell death by radiation is caused primarily by oxidative damage with consequential loss of maintenance activities including DNA repair

    Control of bacterial iron homeostasis by manganese

    No full text
    Perception and response to nutritional iron availability by bacteria are essential to control cellular iron homeostasis. The Irr protein from Bradyrhizobium japonicum senses iron through the status of heme biosynthesis to globally regulate iron-dependent gene expression. Heme binds directly to Irr to trigger its degradation. Here, we show that severe manganese limitation created by growth of a Mn2+ transport mutant in manganese-limited media resulted in a cellular iron deficiency. In wild-type cells, Irr levels were attenuated under manganese limitation, resulting in reduced promoter occupancy of target genes and altered iron-dependent gene expression. Irr levels were high regardless of manganese availability in a heme-deficient mutant, indicating that manganese normally affects heme-dependent degradation of Irr. Manganese altered the secondary structure of Irr in vitro and inhibited binding of heme to the protein. We propose that manganese limitation destabilizes Irr under low-iron conditions by lowering the threshold of heme that can trigger Irr degradation. The findings implicate a mechanism for the control of iron homeostasis by manganese in a bacterium
    corecore